
Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 1

of 17

2023 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
MOSA TECHNICAL SESSION

AUGUST 15-17, 2023 - NOVI, MICHIGAN

Deterministic & Modular Architecture for Embedded Vehicle Systems

Michael Doran1, Mark Russell2, Leonard Elliott2

1DornerWorks Ltd, Grand Rapids, MI

2U.S. Army DEVCOM GVSC, Warren, MI

Disclaimer: Reference herein to any specific commercial company, product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the Department of the Army (DoA). The opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the
DoA,and shall not be used for advertising or product endorsement purposes.

The next generation of Army ground vehicle systems aim to provide the
warfighter with advanced capabilities while ensuring cyber resiliency. One key
technology, Ethernet, has enabled the modernization of military ground vehicles by
providing a broad range of beneficial features. The scalability and high bandwidth
of an Ethernet based system provides the ability to process large volumes of sensor
data with low latency, however its inherent lack of determinism represents a
significant disadvantage. A deterministic network requires that communication
assurance is provided through bounded message latency, and this is required for
many ground vehicle weapon and crew stations functions. Traditional Ethernet
based networks are unable to satisfy the strict safety and functional requirements
for Army vehicle systems due to this lack of determinism. Modular Open System
Approach (MOSA) initiatives such as the Ground Combat System Common
Infrastructure Architecture (GCIA) seek to leverage open-standards such as Time-
Sensitive Networking (TSN) to achieve real-time, deterministic communication
over Ethernet. TSN provides enhancements to regular Ethernet which enable
logical segmentation of deterministic and traditional best-effort network traffic
while simultaneously be transmitted on the same physical media.

This paper presents a reference architecture which incorporates key

elements from GCIA, including TSN, and complements them with embedded
virtualization technologies to enhance the safety and security of the system. The
seL4 microkernel is used to deploy virtualized guests and containers on a target
representative of an embedded platform for ground vehicle electronics, the ARMv8.
By utilizing seL4 and virtualized guests a system designer can now combine the
isolation provided by hypervisors with the logical segmentation provided by TSN

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 2

of 17

to create a partitioned architecture that increases system assurance. Aspects of
this architectural approach and technology have already been adapted across
multiple programs within DEVCOM-GVSC.

Citation: Michael Doran, Mark Russell, Leonard Elliott, “Deterministic & Modular Architecture for Embedded
Vehicle Systems” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS),
NDIA, Novi, MI, Aug. 16-18, 2023.

1. INTRODUCTION

1.1 Background

In the last decade a key enabler for next

generation automotive and industrial system
hardware/software designs has been
virtualization [1]. Modern embedded
systems that utilize the ARM, x86, or RISC-
V architectures are now equipped with virtual
extensions. These extensions were the
response to market pressures to minimize
size, weight, power, and cost (SWaP-C).

Software designers are now able to:
1. Architect a system capable of

enforcing isolation of disparate
compute domains while executing on
the same hardware [2]

2. Provide a system capable of rapidly
scaling and updating with an existing
DevSecOps pipeline [3]

3. Adapt to new industry best practices
by deploying improved capabilities
(i.e. TSN)

One response to these demands in recent
years is hypervisor-based technology,
however traditional enterprise hypervisors do
not provide the assurance or real-time
performance needed to support mixed-
criticality applications. The seL4
microkernel can serve as an embedded
hypervisor that can support the deployment
of high assurance software through its unique
and comprehensive formal verification [4].

1.2 seL4

 Formal proofs of correctness make seL4 a

strong candidate for building safety-critical

and secure systems. Figure 1 illustrates the
seL4 proof chain.

Figure 1: seL4 Proof Chain

The core of seL4’s verification is the

functional correctness proof, which claims
that the C implementation is free of
implementation defects. The formal
specification of the kernel’s functionality is
expressed in a mathematical language called
higher order logic (HOL). The HOL
specification in this case is represented by the
abstract model in Figure 1. The C
implementation is then a refinement of the
abstract model, meaning that the possible
behaviors of the C code are a subset of those
allowed by the abstract model. Kernel
behavior is expressed by the abstract
specification, thus preventing the kernel from
behaving in ways that are not allowed by the
specification. A kernel that is formally
verified, such as seL4, can then shield itself
from attacks such as stack smashing, null-
pointer dereference, and any code injection or
control flow-hijacking [1].

Nathan Studer
Should more detail be provided on this proof?��

Michael Doran
More detail has been added regarding seL4 and the proof chains��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 3

of 17

As a part of the formally verified proof,
seL4 also provides a way to additionally
verify the executable binary produced by the
compiler. Verifying the executable binary is
an additional security-critical step to prevent
malicious compilers from performing such
actions such as building a Trojan that opens a
back door to the OS. Specifically, the binary
is proved to be a correct translation of the
proved correct C code.

Figure 2: Translation Validation Proof

Chain

The proof chain illustrated in Figure 2 is an
automatic process that happens in multiple
stages. A formal model of the processor’s
Instruction Set Architecture (ISA) formalizes
the binary in the theorem prover. The
formalized ISA feeds the disassembler,
written in the HOL4 theorem prover, to
translate the low-level representation into a
higher-level representation in a graph
language that represents control flow. The
formalized C program is then translated into
the same graph language which allows for
comparison of two programs to assess for
equivalent representation.

1.3 Security Properties

Figure 1 illustrates the proofs between the

abstract specification and the high-level
security properties: confidentiality, integrity,
and availability. These properties are subsets
of the abstract specification and build in
security to the kernel. When proven correctly
the kernel will enforce these properties:

• Confidentiality: seL4 prevents

unauthorized read/writes to data.

• Integrity: seL4 prevents unauthorized
modification of data.

• Availability: seL4 prevents
unauthorized use of resources.

1.4 Hypervisor Design

seL4 provides the ability for a system

architect to implement a hypervisor and
virtual machine monitors (VMMs) capable of
deploying isolated virtual machines (VMs) as
notionally illustrated in Figure 3.

Figure 3: seL4 Hypervisor Mode

The design paradigm depicted in Figure 3

demonstrates a high-level overview of the
type of hardware and software configuration
designed to meet SWAP-C requirements. At
the lowest level of this architecture is the
target hardware. In this case the target
hardware used for this effort was the
ARMv8, however, it can be applied to x86
and RISC-V as well. Software abstraction is
applied to achieve a Type 1 hypervisor
model. This type of software abstraction
enables logical partitioning of compute
domains in the form of guest VMs.

1.5 TSN

One of the main objectives of this effort was

to achieve determinism within an seL4-based
virtualized embedded architecture. Figure 3

Elliott, Leonard D CIV USARMY DEVCOM GVSC (USA)
Just want to make sure that this image and Figure 1 are either created here or cited properly

Nathan Studer
I am not sure what this is trying to say.��

Michael Doran
modified to make more sense��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 4

of 17

illustrated the foundational concept of the
embedded design and Figure 4 illustrates the
hardware resources needed and the interface
that successfully implemented TSN for this
effort.

Figure 4: Implementing TSN Bridge with

seL4 via Device Passthrough

The architecture in Figure 4 showcases how
device interfacing works with
seL4/CAmkES. The crew-station hardware
in this design is equipped with TSN
Intellectual Property (IP) core, discrete I/O,
and Ethernet. TSN traffic is routed via a TSN
bridge. Once TSN traffic has entered the
system the TSN IP core within the crew-
station hardware forwards the traffic along to
both compute domains via a virtIO
connection. The main benefit of this
architecture is that the high assurance domain
has direct, low latency, access to hardware
peripherals, and other domains still have
mediated access to those same peripherals via
virtIO. This configuration provides
flexibility to add/remove hardware
peripherals as needed and lends itself well to
integration of a ground vehicle system.

1.6 Overview

The rest of this paper will provide context

surrounding specific Army uses cases and

objectives for this effort. In addition, this
paper also provides a detailed overview of the
architecture specific features such as TSN
Bridging, Virtual CAN, Virtual GPIO,
Health Monitoring, and Secure Boot. This is
followed up with brief testing results and
followed by a discussion regarding transition
results and future improvements.

2. Army Use Cases and Objectives

This section aims to provide an overview of
the objectives that motivated this effort.
Brief details regarding the GCIA design are
discussed, which is then followed up with the
objectives and Army use cases for ground
vehicles.

2.1 Objectives
 The objective of this effort was to advance
cyber-physical systems and capabilities.
This was achieved in this effort by providing
a reference architecture that is aligned to
ground vehicle platforms, therefore, ensuring
consistent MOSA implementations.

The modular design, supported with strong
isolation provided by embedded hypervisor
and virtual network technology, will reduce
time and cost to add or upgrade capabilities
on and across future platforms and enable
development and integration of solutions at
the hardware/software component level
versus the entire subsystem. Overall, this
design principle should reduce the need to
retest the entire system each time a new
component is added or changed.

The current state of combat ground vehicle
design is undergoing a paradigm shift.
Capabilities in the form of sensors,
processors, and effectors are now designed to
share hardware and compute resources all
while maintaining a continuous
update/upgrade cycle. Figure 5 illustrates
major elements of the GCIA including the
relevant network, I/O Adapter, Crewstation,
and Common Compute components.

Leonard
Can this Be updated to say TSN Bridge?

Michael Doran
updated

Nathan Studer
Are you trying to say that the high assurance domain has direct (low latency) access to the peripherals, and other domains still have access to those same peripherals over VirtIO?��

Michael Doran
precisely��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 5

of 17

Figure 5: GCIA 2.0 Conceptual Diagram[8]

The scope of effort in this research enables
GCIA, as the SmartIO platform can be used
as a Crewstation, Common Compute or I/O
Adapter and is TSN-enabled. SmartIO
converts discrete I/O signals to TSN
messages to be distributed multiple end
nodes. The end nodes in this case include
both the virtualized guests executing in
disparate compute domains – example given
in Figure 3 and other TSN end stations
connected to the TSN bridge. The rest of this
section will discuss the specific Army use
cases for this type of reference architecture.

2.2 Army Use Cases

The military ground vehicle use-cases and
scenarios where this type of modern,
partitioned, and deterministic architecture are
numerous and support the kinds of logical
segmentation identified as a key objective in
the DoD’s Zero Trust Strategy that was
released in November 2022. Traditionally
military ground vehicle control applications
and functions are implemented with
technologies such as CAN, MIL-STD-1553,
RS-422 and/or point-to-point discrete
signals. These interfaces are all prime
candidates to be integrated with and
eventually replaced with this emerging
architecture. Examples of systems that have
enhanced in specific use cases are discussed
in this section.

2.2.1 Virtualized Sensor Control for
Conformant and Distributed
I/O

A ground vehicle system is entirely made
up of complex subsystems. The reference
architecture developed in this effort utilized a
combination of virtualized I/O interfaces and
TSN to enable the common compute i.e.,
SmartIO, to process, transmit, and receive
sensor data distributed throughout the
vehicle.
 Distributed processing and I/O in this
context mean that the system must have the
ability to route hardware peripheral data,
such as CAN, throughout the entire system.

Another benefit of conforming I/O with
virtual interfaces is the reusability and
portability of that software across different
computing architectures (i.e. x86, RISC-V,
etc.). More details are provided in Section 6
Transition with respect to the success of this
architecture being deployed across multiple
programs at DEVCOM-GVSC.

Virtualized conformant I/O also enables
security enhancements for a more hardened
posture. seL4 provides great access control
of hardware components within VM(s) to
prevent any undesired access from one
subsystem to another. Finally, virtualized
conformant I/O provides a lower attack
surface by virtue of SWAP-C requirements.
With one common compute platform the
lower physical footprint results in a smaller
attack surface for an Intrusion Detection
System (IDS) to monitor.

2.2.2 Health Monitoring and Remote
Control

Establishing conformant I/O within a
complex system along with a common
compute provides the foundation for
implementing health monitoring, and remote-
control functionality. Custom components
provide the ability for a designer to develop a
monitor component that can glean info on the
internal health of the system. This health

Leonard
Need a source here probably

Michael Doran
Sourced

Nathan Studer
This sentence does not make sense.��

Michael Doran
updated��

Leonard
What does conformant mean in this context

Michael Doran
After a phone call we both cleared up conformant IO to mean discrete signals conforming to TSN for distributed computing

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 6

of 17

monitor component can be configured to
continuously monitor for certain system
events including, but not limited to:

• Internal faults (crashes, overflows,

malfunction, etc.)
• Memory Access read/write)
• Peripheral Access

Internal events and health metrics are easily

transmittable to an end node within the same
network and can provide real-time
information on the current state of the
vehicle. Of course, if data can be transmitted
from the system it is plausible to design an
additional component service to seL4 that
allows for incoming commands to be
received and parsed throughout the system
for remote control. Remote control of a
ground vehicle system promotes
teleoperation by remote operators.

2.2.3 Secure Boot and Update
Securely booting and updating is of

paramount importance for a cyber physical
system, especially a weapon system. The
reference architecture employed in this effort
devised a portable mechanism for securely
booting the seL4 microkernel, components,
and guest VMs. The architecture is modular
enough to provide a consistent secure boot
and update process across multiple platforms.

Of course, once a system has deployed a
version of software it must adhere to a
consistent update process to update elements
of that same system. This reference
architecture can update individual software
components of the system ranging from
firmware, microkernel, component,
virtualized IO, guest VMs, etc. These
integrity protections enhance the overall
security posture of the systems.

3. Architecture
This section aims to provide a detailed

overview of the reference architecture

deployed and evaluated in this study. The
UEI SmartIO platform (Figure 6) which is
based on the AMD Zynq architecture was the
target platform for this effort.

3.1 Hardware
The UEI SmartIO system is a ruggedized

rack mounted design. The rugged and
compact design expands system capability by
installing hardware peripherals to the rack
backplane as needed. The Zynq single board
computer automatically enumerates and
interfaces with additional hardware
peripherals. A middleware layer is also
provided to make hardware peripherals
available through a network API.

Figure 6: UEI SmartIO Platform

The Zynq platform is a capable architecture

that provides processing system (PS) and
programable logic (PL) in one integrated
circuit. The PS in this case executes the
virtualized architecture (seL4, VMM, VMs,
etc.) and the PL is dedicated to executing the
UEI support functionality including the TSN
IP core. Figure 7 provides an abstract view
of how the processing system (PS) interfaces
with the programmable logic (PL) for the
Zynq platform.

Nathan Studer
The health monitor network is disconnected from the main network though, so how is it related to remote control?��

Michael Doran
yes - but it doesn't have to be for future implementations. This current implementation is not, but we shouldn't ignore that we can provide remote capability at some point.��

Leonard
This paper is pretty long and trying to cut out some of the things that are more generic

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 7

of 17

Figure 7: PS-PL Separation of Virtualized

seL4 architecture and TSN IP

The UEI SmartIO platform combined with

the Zynq architecture is a representative
candidate for prototype of next generation
technology for ground combat vehicles. The
form factor aligns with modular hardware
design that allows for easy integration and
development of hardware peripherals. The
Zynq system on chip (SoC) provides the
capability to design for SWAP-C
requirements.
Referring to the system architecture drawing

in Figure 1, it is easy to think of a mil-
ruggedized version of SmartIO as a
Crewstation, Common Compute, or I/O
Adapter component. The SmartIO interfaces
with vehicle capability components, storage,
networking, etc.

3.2 Software

The main software elements that were
developed because of this effort include:

• Shared Device Support

o GPIO
o NVMe
o CAN
o Network

• TSN Bridging
• Formally Verified Network Stack

• Fault Tolerance/Handling
• seL4 Application Secure Boot

The rest of this section will discuss the design
details of each of the elements listed above.

3.3 Shared Device Support

One of the goals of this project was to
provide documented and reusable software
modules that can be ported to various
hardware platforms. Various hardware
platforms can take the form of a different
architecture all together (x86, ARM, RISC-
V, etc.) or it can mean a different platform
within the same family of architecture.

For example, this effort utilized a total of
four development kits to develop the
software capabilities discussed in this
section. The four development kits used
were all based on the Zynq. All software was
eventually tested on the SmartIO platform for
verification. If anything, this testimonial
serves to substantiate the claim that this
reference design is successful with respect to
reusability and porting across platforms.

The rest of this section aims to discuss the
software building blocks of each component
as it relates to GPIO, NVMe, CAN, and
Ethernet.

3.3.1 GPIO

The GPIO seL4 driver is split into two main

components: the GPIO-MUX-Server front
end and the low-level device driver backend.
The low-level device driver is responsible for
reading and writing the GPIO device
registers, and the GPIO-MUX-Server
component is an abstraction that provides a
procedural interface to any client connected
to it. Figure 8 illustrates the seL4 GPIO
driver.

Nathan Studer
What about the I/O Card passthrough?��

Michael Doran
IO card pass through is just discrete IO in this case. Not sure it's entirely important to highlight if we talk about it in the subsequent sections��

Nathan Studer
GPIO and CAN were not ported to Smart I/O. Do we really need to include them? CAN is going to be covered by the MVH paper anyway.��

Michael Doran
This effort implemented CAN and GPIO on the ZYNQ architecture. With respect to modularity I think it is relevant to include all aspects of this architecture that were implemented.��

Nathan Studer
What is the VM interface to GPIO? In this case, I believe it is an emulated Xilinx GPIO peripheral.��

Michael Doran
updated the diagram��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 8

of 17

Figure 8: Virtual GPIO Driver

3.3.2 2 NVMe

NVMe driver support enables the
capability for this reference design to
interface with non-volatile storage. Figure 9
below illustrates the block diagram for how
the virtual NVMe driver was implemented
for this design.

Figure 9: Virtual NVMe Driver

The NVMe virtual driver architecture
consists of passing through the address of the
NVMe device to PCIe. The PCIe interfaces
with an NVMe driver. The block storage

server handles API calls from VMMs and
components to handle specific commands
(i.e. Read, Write, Status, Capacity, etc.). This
architecture can be configured to allow for
each component and guest VM to have full
access to an NVMe drive and/or configured
to access only a partition of the NVMe
device.

3.3.3 CAN

The CAN seL4 driver consists of a backend

CAN Server which is responsible for
interfacing with the CAN interface for
sending and receiving data on the bus. The
CAN server interfaces with the high-level
Virtual CAN device which is comprised of
two queues for TX/RX traffic. The data from
the TX/RX queue feeds into the TX/RX
registers of each guest VM. The virtual CAN
driver is illustrated in Figure 10.

Figure 10: Virtual CAN Driver

 3.3.4 Ethernet

Like the implementation for GPIO and
NVMe, network device support interfaces a
physical Ethernet device to an Ethernet
driver. The Ethernet driver enables a
connection to VM’s via a virtIO-Net
interface. Components can interface with the

Nathan Studer
Similar question to GPIO, what is the VM interface to this functionality?��

Michael Doran
updated��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 9

of 17

Ethernet driver directly. Figure 11 illustrates
the architecture for the implementation of
shared network device support.

Figure 11: Shared Network Device Support

3.4 TSN Bridging

3.4.1 TSN Standard
TSN bridging between two guest VMs is

achieved via a virtIO connection with 802.1Q
header support. Packets with an 802.1Q
header are switched according to the PCP tag
within the header. Untagged packets are
switched as best-effort. These are connected
to a TSN switch which handles inter-VM
communication and communications with
the physical NIC, as well as configuration of
the TSN IP. The TSN switch can be
configured with the allowed Quality of
Service (QoS) for each of the connected
devices.

3.4.2 Reference Design TSN
Implementation

For this current design the inter-VM

communications will not conform to TSN
standards unless TSN standards are
implemented within virtIO-Net. The TSN
switch is currently only a switch and does not
conform to standards that make it a full TSN
bridge. Figure 3 in Section 2.5 illustrates the
current implementation of TSN for this

effort. For the SmartIO platform there are
two VMs implemented; the lower assurance
GUI driver and the higher assurance safety
critical I/O processor. The high assurance
domain has device passthrough access to the
TSN device. TSN traffic can be routed from
the high assurance domain via a virtIO
connection. This type of implementation
introduces packet latency between VMs but
can be improved by pinning the TSN switch
to a single core or by using ePBF or XDP;
these two approaches will not completely
solve the latency problem without
implementing a full TSN bridge.

3.4.3 Advantages

The arbitration implementation required

less effort and provided the high assurance
VM to have a fully TSN compliant interface.
The network topology is easily configurable
in software via command line interface
(CLI). Complex network topologies are
achievable with kernel-based software
bridges. Finally, there are no additional
components/VMs needed for network
filtering/monitoring – this can all be achieved
by the arbitration VM.

3.4.4 Disadvantages

Disadvantages to this approach include:

• Requires resource overhead of an
entire VM.

• VM kernel adds additional latency.

3.5 Fault Tolerance/Handling

The health monitoring design consisted of 5

elements: VMM Fault Handler, Cyber
Monitor Component, Logger Component,
Network Application, Host PC. Figure 12
illustrates all 5 stages of the health
monitoring process.

Nathan Studer
Our TSN setup just assumes packets from the low assurance VM are mapped to a single priority queue.��

Michael Doran
added section heading to clarify��

Nathan Studer
We did not do anything with 80.1Q headers.��

Michael Doran
Be clear about how TSN bridging is supposed to work. There are some concessions that had to be made to make it work in a virtualized environment:��We have VM0 which has TSN device passthrough, has access to all the priority queues. VM1 has a virt connection to VM0 which is then directly mapped to a QoS.

Michael Doran
VM1 is currently mapped to best network. You should be able to map VM1 to any queue, but for this effort it is just mapped to VM1. ��

Nathan Studer
There is no software TSN switch.��

Michael Doran
updated secton��

Nathan Studer
The bigger issue is that the Linux network bridge code would need to be TSN capable.��

Nathan Studer
Missing the big one. Direct access to TSN allows the high assurance VM to have a fully TSN compliant interface.��

Michael Doran
updated.��

Nathan Studer
VMM what?��

Michael Doran
added fault handler��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 10

of 17

Figure 12: Health Monitoring Architecture

Each time a system event occurs that

information is transmitted to the “Cyber
Monitor Component” (CMC) executing in
user-space via an RPC call. The CMC logs
the event and takes necessary action based on
the event severity. A separate logging
component executing in user-space interfaces
with the CMC and stores log information.
Logs are retrieved via a network application.
The network application is a separate user-
space application with a lightweight network
stack capable of receiving incoming request
via UDP connection from a Host PC.

3.6 VM Secure Boot

The secure boot process implemented in
this reference architecture was motivated by
the following common threats:
• Local user-initiated installation of

malicious system boot firmware
• Malware exploit of weak boot firmware

security controls or exploit of system
boot firmware through overwrite or
modification.

• Network-based system management
tools with valid access control (AC)

• Any of the preceding mechanisms could
be used to rollback to an authentic but
vulnerable system boot firmware

With the preceding attack vectors in mind
the security principles that guided this
implementation included a process for

verifying that the boot firmware image was
generated by an authentic source and a
mechanism for ensuring that the boot
firmware is protected from modification
outside of the secure update process. These
guidelines were achieved on the Zynq
through the Hardware Root of Trust
(HWRoT) feature on the hardware by
programming the eFUSE. Programming the
eFUSE on the platform forces the
Configuration Security Unit (CSU) to
perform authentication using the asymmetric
RSA public/private key scheme. Figure 13
illustrates the signing overview of software
images.

Figure 13: Secure Boot Signing Overview

Subsequent authentication and loading of

the seL4 kernel, VMMs, and VMs were
achieved by key chaining and deployment of
a crypto-component capable of performing
RSA authentication. Root of Trust (RoT)
persisted by authenticating the previous boot
stage before proceeding to the next stage. If
at any stage, the authentication process fails,
the entire boot process is halted. The
verification process is illustrated in Figure 14
below.

Figure 14: Secure Boot Verification

Overview

Nathan Studer
Would "VM Secure Boot" be a better heading?��

Michael Doran
updated section heading��

Nathan Studer
We didn't address any of these last two did we? (I know the Xilinx chip is capable of it, but we did not actually implement it.)��

Michael Doran
We didn't implement anything specific to network-based system management tools - no. For the last bullet point we implemented FIT configurations and the potential to sign those configurations, so the hook exists. Furthermore, these are the motivations that we addressed - not the actual implementation.��

Nathan Studer
Is there a way to simplify this drawing, so that it can be readable?�

Michael Doran
simplified�

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 11

of 17

3.7 Challenges

The specific challenges faced when
implementing this architecture were largely
platform specific. The process for porting
this architecture to different platforms that
utilize the Zynq provided hardware
dependency hurdles specific to the device
tree.

Specifically, when porting to the SmartIO
platform there was a challenge in identifying
which specific nodes of the device tree were
needed for IO card passthrough. Several
nodes within the device tree had unintuitive
dependencies on other nodes.

4. Testing

Benchmarking results for this effort
involved exercising basic functionality of
each feature to demonstrate a proof of
concept. The intention was to create a full
featured platform rather than provide a full
featured suite of software components. This
approach allowed each software element to
be designed with modularity and flexibility in
mind so that they can easily adapt and port
across platforms/projects within GVSC and
the greater DoD.

4.1 TSN Bridging

Initial TSN results tested for throughput of

the high priority queues and best effort
queues. Table 1 provides the results of
benchmarking results.

Table 1: TSN Benchmarking results
Configuration Bandwidth (Mbits/sec)

High Priority
Passthrough Device

871

Low Priority Bridged 886
Best Effort Bridged 227

These results indicate that the reference

architecture is not achieving optimal
performance for a design intending to utilize

TSN network traffic. The performance most
definitely suffers from a degree of
performance degradation because of this
architecture. Further investigation would be
needed to resolve the low bandwidth
performance with future improvements.

4.2 Health Monitoring

Fault handling verification came down to

demonstrating four features:

• VM Pause
• VM Reboot
• VM Kill
• Logging/Retrieval

The results of this demonstration were

captured via the serial console of VM0 and
VM1. For example, Figure 15 below
demonstrates the health monitor’s capability
to pause both VM0 and VM1 by issuing a
suspend command.

Figure 15: VM Pause

Figure 15 above indicates that after a suspend
command has been issued to VM0 and VM1
the serial console ceases printing any
information even when sending data to VM0
and VM1 over the serial port. The next
demonstration invoked the health monitor’s
reboot capability.

Nathan Studer
What is the baseline measurement. Hard to verify the conclusions without anything to compare against.��

Michael Doran
I don't have those on hand�

Nathan Studer
This is better than I remember it being.��

Michael Doran
I pulled this measurement from the TIM slides�

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 12

of 17

Figure 16: VM Restart

A VM restart command is demonstrated in
Figure 16. It can be seen from the serial
console output that once restart has been
invoked, a new boot trace now appears for
VM0 and VM1. The third command
supported by the health monitor API is the
VM Kill command. This command takes an
argument that indicates which VM(s) should
cease execution. An example is given in
Figure 17.

Figure 17: VM Kill

The final feature of the health monitor that
was verified was the logging capability. This
feature was implemented as a proof of
concept to provide real time health metrics of
this representative system Figure 18 below
provides an example output of system events
that occurred during testing.

Figure 18: Health Monitor Log Output

This demonstration provided output for
health monitoring of two VMs. Events are
appended to the log when they occur and are
classified by severity as it relates to
survivability of the system. As of right now
these classifications are based on arbitrary
decisions and are not currently representative
of any hard requirement for cyber physical
systems being currently developed within
DEVCOM-GVSC. However, what the
health monitoring results indicate is that this
reference architecture now has a portable
module that can evolve to suit whatever
introspection/health monitoring needs a
DEVCOM-GVSC project might have.

4.3 Secure Boot

Secure boot was tested at the following

stages: firmware, bootloader, seL4
monolithic image, and guest. The firmware
stage was validated by utilizing the CSU of
the Zynq architecture. To demonstrate this
functionality a hash of the public key used to
sign firmware images was flashed to the
eFUSE on a development kit. Figure 19

Nathan Studer
Wasn't it also tested at the VM level?��

Michael Doran
the seL4 monolithic image encompasses the VM level��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 13

of 17

illustrates an overview of how the value
stored in eFUSE establishes a RoT for
securely booting firmware images.

Figure 19: HWRoT with CSU[9]

To test secure boot at the firmware stage a
boot image was generated and signed. Using
a hexadecimal file editor, a modification was
made to the raw data of software partition
included in the boot image. This corruption
was intended to validate that the CSU can
detect changes to the integrity of the boot
image and halt the boot process as intended.
The only system feedback provided by the
development board to indicate that the
system failed to boot is a red LED when
attempting to boot the corrupted image.

Figure 20: Boot Firmware Corruption Test

Once verification of the CSU was performed
the testing then transitioned to validating the
bootloader stage. In this case the boot-chain

utilized U-Boot to validate signed Flattened-
Image-Tree (FIT) images [7]. The FIT image
generated for this effort contained the entire
monolithic seL4 image. For testing purposes,
a similar corruption test was performed to the
FIT image to validate that U-Boot would halt
the boot process if the integrity of the FIT
image couldn’t be verified. Finally, the last
stage was tested in a similar fashion to the
firmware and bootloader. The guest images
were programmatically corrupted during
configuration/compile time. Table 2
provides the complete set of testing for secure
boot in this effort.

Elliott, Leonard D CIV USARMY DEVCOM GVSC (USA)
WE will want to include a reference the xilinx boot guide for this image

Michael Doran
sourced

Nathan Studer
Reference the u-boot documentation?�

Michael Doran
referenced

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 14

of 17

Table 2: Secure Boot Test Cases for Boot

Stages
Test Image Result
Corruption

Firmware Boot Halted
Bootloader
Monolithic

seL4
Guest

Bad Public
Key

Firmware Boot Halted
Bootloader
Monolithic

seL4
Guest

Unsigned
Image

Firmware Boot Halted
Bootloader
Monolithic

seL4
Guest

Successful
Signed
Boot

Firmware System
Booted Bootloader

Monolithic
seL4

Guest

Validation of common use cases: Corruption,
Bad Public Key, and Unsigned images were
tested at each boot stage. The results were
the same for each test case in that the
intended result was for the system to halt the
boot process and provide meaningful
feedback via serial/debug port.

4.4 CAN

CAN testing consisted of deploying two

guest VMs with the virtual CAN driver
enabled. This allowed both VMs to be
configured to interface with the physical
CAN device on a ZCU102. The ZCU102
was selected mainly due to the lack of a CAN
interface on the SmartIO platform out of the
box. Figure 21 demonstrates both guest
VM’s being configured to interface with the
CAN device.

Figure 21: Guest VMs Configured for

CAN

From Figure 21 the serial output guest VM0

(in red) readying the uplink for the can0
interface. VM1 (in green) is also
demonstrating the ability to enumerate an
uplink with the can0 interface. This
demonstrates that both VMs are enumerating
a CAN device during boot time. Figure 22
below demonstrates a scenario where guest
VM0 is configured to receive CAN data
transmitted by VM1 using the “cansend”
command from Linux.

Figure 22: Demonstrating CAN TX/RX

from Guest VMs

Figure 22 above demonstrates the ability for
guest VM0 (in red) receiving data sent from
guest VM1 (in green) and dumping that data
to the serial console.

4.5 NVMe

Virtual NVMe driver verification was
performed on the SmartIO hardware by
installing a 500GB SSD M2 hard drive into
the device. Driver support was enabled for
seL4 and guest VMs during compile time.
Figure 23 below demonstrates a block server
interfacing with the SSD during boot time.

Nathan Studer
What about the successful boot case?��

Michael Doran
added test case��

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 15

of 17

Figure 23: NVMe Verification

During the boot sequence of seL4 the block
server component is loaded into memory and
begins execution. From Figure 23 above the
text output in the serial console indicates that
“unvme_do_open” has been invoked and
descriptive data of the drive is provided.
Furthermore, once the seL4 kernel and
respective components completed boot the
guest VMs proceeded to boot to separate root
file systems. Each VM was given a dedicated
partition to boot from and can be observed in
Figure 24 below.

Figure 24: Guest VMs Booting from

Separate File Systems

This capability allows the reference
architecture to further isolate guest VMs by
granting them dedicated non-volatile storage.

4.6 GPIO

Virtual GPIO driver verification was

demonstrated by performing read and write
actions that interfaced with physical
hardware on the ZCU102 development kit.
Guest VM0 was configured to interface with

a physical pushbutton on the ZCU102. This
is demonstrated in Figure 25 below.

Figure 25: Pushbutton Configuration from

VM0

Sysfs was used to perform a read of the GPIO
pushbutton. When the pushbutton was
pressed a corresponding value of 1 appears
that indicates a pushbutton press.

Figure 26: Push Button Read

Write functionality was demonstrated by
toggling an LED on the ZCU102 from guest
VM1. Sysfs was used again in this case to
write to the corresponding GPIO pin. Figure
27 below demonstrates the process of writing
to the corresponding GPIO pin and the LED
toggling ON.

Figure 27: Toggling LED from VM1

What these two demonstrations indicate is
that basic read and write functionality from
the reference architecture are enabled when
using the virtual GPIO driver.

5. Transition Results

Multiple programs at DEVCOM-GVSC

including Military Vehicle Hypervisor,
(MVH), Cybersecurity for Robotic &
Autonomous System Hardening (CRASH)

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 16

of 17

and Enhanced-Vetronics (E-Vetronics)) are
currently implementing and validating
aspects of the reference architecture covered
in this article. Specific functionality for each
program is summarized in Table 3 below.

Table 3: Ported Functionality to GVSC

Programs
DEVCOM
GVSC
Program

High/Low
Assurance
Domains

Shared
Driver
Support

Secure
Boot

Platform

Military
Hypervisor

X X ARMv8

E-
Vetronics

X X X ARMv8

CRASH X x86

CRASH is utilizing the block server
implementation highlighted in this effort. E-
Vetronics is utilizing the high/low assurance
partitioning, shared driver support, and
secure boot. Finally, MVH is also using
high/low assurance partitioning along with
shared driver support (CAN).

6. Future Improvements

TSN benchmarking indicated that there is a

need to investigate how to obtain
performance gains within the seL4
microkernel. Naturally, due to virtualization,
there is an expectation of some performance
degradation with respect to TSN
benchmarking; however, the results indicate
that beyond the effects of virtualization there
are performance degradations because of the
seL4 kernel. It is currently up for
investigation to determine the root cause and
initial discussions seem to indicate that the
interrupt framework is the likely candidate to
start such work.

As of now this implementation does not
provide a way to boot into a failsafe mode if
authentication fails during secure boot. One
improvement to this design could include the
option to boot from eMMC with the option to
include a fallback image in the event of
authentication failure. In the same vein the
addition of a Trusted Platform Module

(TPM) would provide the ability for a system
architect to deploy measured boot. Measured
boot enables the embedded system to have a
configurable secure boot mode that allows
for the logging of failures to authenticate with
the option to halt/proceed boot. A TPM also
provides a system designer the means to
implement advanced health monitoring
techniques: remote attestation and real time
introspection to executing processes.

7. REFERENCES
[1] G. Heiser, “Virtualizing embedded systems -

why bother?” in 2011 48th ACM/EDAC/IEEE
DAC, 2011, pp. 901–905.

[2] S. Pinto, H. Araujo, D. Oliveira, J. Martins,
and A. Tavares, “Virtualization on TrustZone-
Enabled Microcontrollers? Voila!” in ` IEEE
RTAS, 2019, pp. 293–304.

[3] T. Prins, “Containerization in Trusted
Computing,” In Proceedings of the Ground
Vehicle Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI,
Aug. 16-18, 2022.

[4] seL4 Foundation, “About seL4”, seL4
Foundation, [Online]. Available:
https://sel4.systems/About/.

[5] DornerWorks, Ltd. “Run Your Mixed
Criticality Applications Together, Without
Interruption, Even When One Crashes,”
DornerWorks, Ltd. 9-22-2020. [Online].

[6] R. VanVossen, J. Millwood, C. Guikema, L.
Elliott, and J. Roach, "The seL4 Microkernel-
-A Robust, Resilient, and Open-Source
Foundation for Ground Vehicle Electronics
Architecture," in the Ground Vehicle Systems
Engineering and Technology Symposium.

[7] Das U-Boot, “U-boot Documentation”
[Online] https://u-boot.readthedocs.io/en/latest/
[8] “Ground Common Infrastructure
Architecture” [Online]
https://www.dsp.dla.mil/Portals/26/Documents/
Conference/2022%20Briefings/Cichosz_DSP%2
0Conference%20Panel_Distro%20A.pptx?ver=q
rtKKCZL4aPXiI527Qay_Q%3D%3D
[9] “Bootgen User Guide v2022.2” Accessed: Jun

6. 2023. [Online]. Available:
https://www.xilinx.com/support/documents/s

https://sel4.systems/About/
https://u-boot.readthedocs.io/en/latest/
https://www.dsp.dla.mil/Portals/26/Documents/Conference/2022%20Briefings/Cichosz_DSP%20Conference%20Panel_Distro%20A.pptx?ver=qrtKKCZL4aPXiI527Qay_Q%3D%3D
https://www.dsp.dla.mil/Portals/26/Documents/Conference/2022%20Briefings/Cichosz_DSP%20Conference%20Panel_Distro%20A.pptx?ver=qrtKKCZL4aPXiI527Qay_Q%3D%3D
https://www.dsp.dla.mil/Portals/26/Documents/Conference/2022%20Briefings/Cichosz_DSP%20Conference%20Panel_Distro%20A.pptx?ver=qrtKKCZL4aPXiI527Qay_Q%3D%3D
https://www.dsp.dla.mil/Portals/26/Documents/Conference/2022%20Briefings/Cichosz_DSP%20Conference%20Panel_Distro%20A.pptx?ver=qrtKKCZL4aPXiI527Qay_Q%3D%3D

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC#7612. Page 17

of 17

w_manuals/xilinx2022_1/ug1283-bootgen-
user-guide.pdf

	1. INTRODUCTION
	1.1 Background
	1.2 seL4
	1.3 Security Properties
	1.4 Hypervisor Design
	1.5 TSN
	1.6 Overview

	2. Army Use Cases and Objectives
	2.1 Objectives
	2.2 Army Use Cases
	2.2.1 Virtualized Sensor Control for Conformant and Distributed I/O

	2.
	2.2.2 Health Monitoring and Remote Control
	2.2.3 Secure Boot and Update

	3. Architecture
	3.1 Hardware
	3.2 Software
	3.3 Shared Device Support

	3.1.
	3.2.
	3.3.
	3.3.1 GPIO
	3.3.2 2 NVMe
	3.3.3 CAN
	3.3.4 Ethernet
	3.4 TSN Bridging
	3.4.1 TSN Standard
	3.4.2 Reference Design TSN Implementation
	3.4.3 Advantages
	3.4.4 Disadvantages

	3.5 Fault Tolerance/Handling
	3.6 VM Secure Boot
	3.7 Challenges

	4. Testing
	4.1 TSN Bridging
	4.2 Health Monitoring
	4.3 Secure Boot
	4.4 CAN
	4.5 NVMe
	4.6 GPIO

	5. Transition Results
	6. Future Improvements
	7. REFERENCES

